
VIRUS BULLETIN www.virusbtn.com

77777MAMAMAMAMAY 2005Y 2005Y 2005Y 2005Y 2005

IT’S ZELL(D)OME THE ONE YOUIT’S ZELL(D)OME THE ONE YOUIT’S ZELL(D)OME THE ONE YOUIT’S ZELL(D)OME THE ONE YOUIT’S ZELL(D)OME THE ONE YOU
EXPECTEXPECTEXPECTEXPECTEXPECT
Peter Ferrie and Heather Shannon
Symantec Security Response, USA

It was a Tuesday and it was sunny outside, but I was inside
waiting for my email client to finish retrieving messages. It
was stuck on one mail that had a huge attachment: a sample
of W32/Zellome.

W32/Zellome arrives as an email attachment. It seems to
exist only to demonstrate its polymorphic engine, since the
worm component is messy and platform-dependent.

EXTREME PROGRAMMINGEXTREME PROGRAMMINGEXTREME PROGRAMMINGEXTREME PROGRAMMINGEXTREME PROGRAMMING
The polymorphic engine takes an idea that was first used by
W32/Apparition, but takes it much further. W32/Apparition
carried its own Pascal source code, which it dropped on
machines on which a Pascal compiler was found. Apparition
would insert garbage instructions into that source code, before
directing the compiler to compile it. Zellome, by contrast,
carries the compiler as a component of its polymorphic
engine. Additionally, Zellome’s polymorphism is
implemented in an unusual way: by using a genetic algorithm.

NANANANANATURAL SELECTIONTURAL SELECTIONTURAL SELECTIONTURAL SELECTIONTURAL SELECTION
Evolutionary algorithms, also known as genetic algorithms,
are based on the idea of biological evolution. By combining
characteristics from a predefined set (genes), and altering
parts of them randomly (mutation), new offspring is
produced with new characteristics. The less fit of these tend
not to pass their genes on to succeeding generations. At
least, that’s the idea. There have already been viruses that
have used this technique, including W32/Simile (see VB,
May 2002, p.4).

Zellome uses a genetic algorithm for a different purpose.
Traditionally in this analogy, the virus is treated as a
species, replications of the virus represent individuals, and
‘fitness’ is the ability to survive in an environment
populated by hostile anti-virus software. For Zellome, the
genetic algorithm is not a model of virus replication; rather,
it is just a computational technique used to produce a
polymorphic decryptor. The species is a set of functions,
and ‘fitness’ is how close the function comes to producing
the required output.

Ultimately, we come to the question: why use a genetic
algorithm in the first place? This is difficult to answer,
because the results are, essentially, no different from the
output of a standard polymorphic engine. It is really no

VIRUS ANALYSIS 2

VIRUS BULLETIN www.virusbtn.com

88888 MAMAMAMAMAY 2005Y 2005Y 2005Y 2005Y 2005

more difficult to detect than normal polymorphic code.
It is highly obfuscated, but it has constant characteristics. It
is effective against emulators, with its many iterations and
heavy floating-point usage, yet its extremely ugly compiled
code is a giveaway.

INCUBAINCUBAINCUBAINCUBAINCUBATORTORTORTORTOR
The virus author calls the polymorphic engine an
‘incubator’. Whenever the incubator is run, it begins by
randomly displaying a message box identifying the virus
author’s name and his choice of the virus name (however,
the engine is simply a modified version of a free tool
written by someone else). Next, it will check if it was run
from the %windows% directory. If it was not run from
there, it will copy itself to the %windows% directory as
‘incubator.scr’ and create ‘incubator.txt’ that contains the
name of the original file. Then the incubator executes itself
from the %windows% directory and then deletes the file
named in the ‘incubator.txt’ file.

KEPT AFLOAKEPT AFLOAKEPT AFLOAKEPT AFLOAKEPT AFLOATTTTT
Before generating a new worm, the incubator encrypts the
worm code that is stored in its .data section. The basic
encoding scheme substitutes an 8-bit value, x, with a 32-bit
float value, E(x), where E is a random quadratic function.
The .C, .D and .E variants of the worm also preprocess the
data with another polymorphic engine (the same one used in
W32/Zelly.B, created by the same virus author), before
applying the substitution encoding.

With the worm encoded as an array of floats, the incubator
now needs a decryption routine to decode the encoding.
There are several ways to do this: one could use hash tables,
construct an interpolating polynomial, or use some
algebraic manipulation to solve the quadratic equation.
Instead, however, Zellome does it the hard way: it uses a
genetic algorithm to ‘grow’ a decryptor. It generates random
arithmetic expressions, then mutates and combines them
until it finds one that happens to undo the encryption
function for the 256 possible input values. This is a
time-consuming task that can take anywhere from five
minutes to half a day.

Once it finds a decryptor, Zellome generates C source code
containing the encoded worm and a short decryption loop,
interspersed with about a megabyte of garbage code.

WHAWHAWHAWHAWHAT’S COOKING?T’S COOKING?T’S COOKING?T’S COOKING?T’S COOKING?
Zellome starts the incubation process by generating an
initial population of 16,384 expressions. The basic elements
of the expressions are:

• binary operators: *, +, -, /

• unary functions: exp, sin, sqrt

• constant float or integer values

• pi (just another constant)

• a variable, ‘X’, representing the input to the function

An expression is represented as a list of 256 tokens, thus the
size of the generated decryptor is limited.

No filtering is done on these expressions: duplicates,
synonymous expressions, and obviously unsuitable
candidates such as constant functions, are all allowed.

RANDAMNRANDAMNRANDAMNRANDAMNRANDAMN

Due to an improperly seeded random number generator, the
initial expressions are not actually as random as they should
be. It is possible for the incubator to generate the same list
of initial expressions in subsequent runs, depending on the
value of an uninitialized variable that is passed to srand(). It
still produces a different decryptor each time, because the
encryption function is generated before this call to srand().

DARDARDARDARDARWINIAN EVOLUTIONWINIAN EVOLUTIONWINIAN EVOLUTIONWINIAN EVOLUTIONWINIAN EVOLUTION
The incubator then begins the process of creating new
generations from this initial population.

First, the current generation is checked for a suitable
decryptor function. It estimates the fitness of each
expression, and saves the value for later use. The ‘fitness’ of
a candidate is the sum of absolute distances from the target
values, multiplied by -0.01. Expressions that produce any
extraordinary values (such as infinity or ‘not a number’) are
assigned a fitness of -FLT_MAX, effectively eliminating
them from further consideration. Particularly promising
expressions are checked against each possible input. If the
resulting values all fall within 0.5 of the target output, a
decryptor function has been found, so control passes to the
source generation routine.

If a decryptor is not found, Zellome proceeds to select the
next generation.

The population is kept constant at 16,384 individuals.

• 15 per cent are unmodified members of the current
generation, including the three fittest specimens.

• 50 per cent are mutated individuals from the current
generation.

• 35 per cent are new ‘children’, constructed by combin-
ing existing expressions.

When Zellome selects an expression for propagation,
mutation, or breeding, it chooses four at random, then picks

VIRUS BULLETIN www.virusbtn.com

99999MAMAMAMAMAY 2005Y 2005Y 2005Y 2005Y 2005

the fittest of the four. Duplicates are allowed, so the same
expression may be used more than once.

The following kinds of mutation can occur:

• Replace one constant with another

• Replace a subexpression with a new random expression

• Change the order of arguments (for example, change
1/X to X/1)

• Simplify constant expressions (for example, replace
sqrt(4.0) with 2.0)

• Replace an operator or function with another (for
example, change sqrt(X) to sin(X))

• Switch subexpressions (for example, change (X + 1.0)
* 2.0 to (X + 2.0) * 1.0)

To keep the expression size from running over the
256-token limit, large expressions (those with more than
64 tokens) are not subject to mutation, except for constant-
substitution.

To ‘breed’ two expressions together, Zellome selects a
subexpression from one parent, and replaces it with a
subexpression from the other parent. There is a five per cent
chance that the offspring will be mutated.

For example:

1st parent: (sqrt ((X) / (5)))

Subexpression: (X) / (5)

2nd parent: ((sqrt (X)) / (2.649156))

Subexpression removed: ((sqrt (X)) / (...))

Offspring: ((sqrt (X)) / ((X) / (5)))

This process continues up to 10,000 generations. In
practice, about 50 to 150 usually suffice to find a decryptor,
though it can take much longer.

In testing, it was observed that all of the decryptors found
by this method contained a sqrt() subexpression. This
may be explained by the quadratic encryption function:
intuitively, if you want to invert Ax^2 + Bx + C, it makes
sense to start by taking the square root of the input. By
contrast, only 25 per cent of the decryptors contained sin():
periodic functions are unlikely to be useful when inverting
polynomials.

GETTING RESULGETTING RESULGETTING RESULGETTING RESULGETTING RESULTSTSTSTSTS
The incubator creates a file, ‘result.c’, in the current
directory. It writes a constant preamble declaring some
functions and global variables, emits the decryption code to
a buffer (to be written to the file later), and writes a series of
random functions that contain array assignments and
garbage code.

The array assignments initialize a buffer with the encoded
worm. (These values are treated as floats during the
decryption computation, but they are initialized as an array
of integers, probably to prevent rounding error.) Zellome
does the assignments in random order. After it writes the
decryptor function, the remaining array assignments access
the buffer through a pointer to a random location in the
middle of the array; the purpose of this obfuscation is not
clear, but one possible explanation is that it is to make it
more difficult to see that one assignment belongs to the
same region of memory as another assignment.

The garbage code consists of function calls, arithmetic
expressions, assignments to local variables, ‘if’ statements
with random conditions, and ‘for’ loops that execute up to
1,000 times. A function call may optionally be enclosed in
an ‘if’ or ‘for’ block, or both, but not if the function contains
or calls any necessary code, such as an assignment function.
This ensures that all of the non-garbage code is called
exactly once.

Rather than assigning random names to functions and
variables, Zellome observes the following naming
convention:

l#### – local variable

p#### – parameter

d#### – array assignment or decryption function

f#### – other function

if#### – inline function

where the ####s are numbers assigned in increasing order.

(This systematic naming convention, together with the
constant appearance of parts of the code, suggest that the
author’s design goals did not include concealing the source
code from detection.)

MALFUNCTIONMALFUNCTIONMALFUNCTIONMALFUNCTIONMALFUNCTION

Functions take up to seven arguments with random types.
They always return a value: there are no void functions. The
return values are either saved to dummy variables, or
discarded; they are not relevant to the decryption process.

Function calls can be any of the following:

• other random functions in the source file

• sqrt, exp, sin, abs, acos, asin, atan, atof, cos

• rand, srand

• fopen (but not fclose)

• malloc (allocating up to 65535 bytes – but not free)

• strcmp, strlen

VIRUS BULLETIN www.virusbtn.com

1010101010 MAMAMAMAMAY 2005Y 2005Y 2005Y 2005Y 2005

• SetCurrentDirectoryA, CreateDirectoryA, CopyFileA,
DeleteFileA, MoveFileA

The code ignores any errors returned by any of these
functions. Since the parameters are well-formed, none of
the functions would cause an exception to occur, so there
is no need for critical error detection. However, the use of
CreateDirectoryA() does create random directories, and
the use of DeleteFileA() and MoveFileA() could, in
exceptional circumstances, result in the deletion or
renaming of real files.

Nestled in the middle of this random code, there is a
surprisingly readable, un-obfuscated decryption loop which
applies the decryption expression, saves the decoded worm
to a stack buffer, and transfers control to the worm.

GET BUFFGET BUFFGET BUFFGET BUFFGET BUFF

Curiously, the code generator allocates a 10,000,000-byte
buffer to contain this decryptor code, though the decryptor
part itself is only a few hundred bytes long, and the entire
source file is seldom longer than 1,500,000 bytes. It is
possible that the goal was to generate more of the source
‘genetically’, but the design was scaled back to a smaller
sub-problem: use a genetic algorithm to generate a
numeric expression, but produce the rest of the code
through normal means.

To give structure to the code, Zellome creates a series of
call trees, each containing an arbitrary number of garbage
functions, and one non-garbage function as a leaf node. It
emits each tree to the file separately, first declaring each
function that appears in the tree, then writing the functions,
in breadth-first order, starting from the top of the tree.

Finally, it generates a top-level tree that calls all of the
others – first the assignment parts, then the decryptor part.
The root node for this tree is supposed to be WinMain, but
due to a bug, this is not always the case. When it generates a
new node for the call tree, it first decides whether the node
will be a garbage function, and only later checks whether it
should be WinMain. If it creates the non-garbage function
as the root node of the last tree, the tree-generation routine
thinks it has finished, so it exits without producing
WinMain. In this case, the source will not compile.

DROP YOUR BUNDLEDROP YOUR BUNDLEDROP YOUR BUNDLEDROP YOUR BUNDLEDROP YOUR BUNDLE

The incubator drops the compiler files at this point, in order
to compile the produced source code. The .A and .B variants
are missing one key file, though (mspdb60.dll), so unless
the file is present already on the system, all compilations
will fail. When compiling, the incubator uses compiler
switches chosen at random from a set that it carries.

The compiler switches that are used cover different areas.
There are switches for code optimization (optimize for size,
or for speed, or disable optimization entirely); for the
expansion of inline functions (all, some, or none); for the
emitting or omitting of frame pointers; for the presence or
absence of exception handling; and the type of exception
handling, if present.

Finally, the incubator will either compress the file with the
copy of UPX that it carries, or append the incubator to the
created file, but not both, then run the result. Since there is
no detection of multiple instances, new replicants will
continue to be generated for as long as the incubator is part
of any replicant.

THE WORM HAS TURNEDTHE WORM HAS TURNEDTHE WORM HAS TURNEDTHE WORM HAS TURNEDTHE WORM HAS TURNED

The worm component begins by retrieving the list of APIs
that it will use, some of which are not used, including two
which are critical to prevent multiple copies of the worm
running at the same time.

It copies itself to the %system% directory as ‘bigfish.scr’,
then hooks the execution of Task Manager. This is done by
creating the registry key ‘HKLM\Software\Microsoft\
Windows NT\CurrentVersion\Image File Execution
Options\taskmgr.exe’, and the value ‘Debugger’, whose data
are set to point to the copied file.

This technique was first described by the virus writer
GriYo as ‘Execution redirection’, and published in the
eighth issue of the 29A virus-writing magazine. The idea is
that Windows NT-based systems run the process named in
the ‘Debugger’ value, expecting it to control the application
that is named in the key. The worm does not run the original
file afterwards. This change continues to work in Safe
Mode, so it is necessary to rename the file instead, in order
to run it manually.

To improve the chance of being executed, the worm
also attempts to create a value in the ‘HKLM\Software\
Microsoft\Windows\CurrentVersion\Run’ key, which it
names ‘bigfish’, and whose data also point to the copied
file. However, the use of the seemingly incorrect API
(RegSetValue() instead of RegSetValueEx()) causes
Windows to create a subkey instead of a value. The result
is that there is no execution via that method on any platform
apart from Windows 2000. Perhaps this is the platform
that the virus author uses, which is why he didn’t notice
the problem.

REGISTER NOWREGISTER NOWREGISTER NOWREGISTER NOWREGISTER NOW

After hooking the registry, the worm queries the registry
value ‘HKCU\Software\Microsoft\Internet Account

VIRUS BULLETIN www.virusbtn.com

1111111111MAMAMAMAMAY 2005Y 2005Y 2005Y 2005Y 2005

Manager\Default Mail Account’, then uses that value to
query the ‘Accounts’ key for the ‘SMTP Server’ value. This
server will be used to send mail, if possible.

The email attachment can arrive in one of two forms. One
form is simply the worm file, the other form includes the
polymorphic engine as appended data. If the polymorphic
engine is present, the worm will detach it into the current
directory and execute it at this time.

The worm always uses the name ‘incubator.scr’ for the
detached file. The detached file is an independent
component and executes without reference to the worm file.

In any case, the worm will encode itself into base64 format
– perhaps surprisingly, using the standard dictionary
algorithm. It might be considered surprising because an
alternative algorithm was published in the seventh issue of
the 29A magazine, which, at only 59 bytes in length, is
smaller than the base64 dictionary itself. In fact, the
worm code is taken from another virus by another author,
with only a few modifications (single subject, etc.), but the
same bugs.

The worm collects email addresses from two sources, and
keeps a list of every email address that it finds. The worm
does not avoid duplicated addresses. The first source of
addresses is the file referenced by the registry key
‘HKCU\Software\Microsoft\WAB\WAB4\Wab File Name’.

JUST BROWSINGJUST BROWSINGJUST BROWSINGJUST BROWSINGJUST BROWSING

The second source is the browser cache directory, within
which all subdirectories will be searched for files whose
extension is one of ‘htm’, ‘asp’, or ‘xml’. For any such file
found, if its size is between 512 bytes and 80 kilobytes, the
worm searches within the file for the ‘mailto:’ string.

A number of bugs exist in this code – the most important of
which is that, while parsing the file, the buffer pointer is
updated to skip any address that was found, but the variable
that holds the number of remaining bytes is not adjusted
correspondingly. This can cause the routine to crash if at
least one address exists, because the buffer pointer will fall
off the end of the buffer. The crash is intercepted by the
worm code, though, so the worm will continue to execute,
but exit the address collection routine.

If the routine does not crash, potential addresses are
examined for the presence of disallowed characters. If any
such characters are found, then the worm will adjust the
pointer in its collected address list to allow the next
address to overwrite the invalid one. However, if no other
addresses exist in the same file, then a bug causes the next
address to be appended to the invalid address, instead of
overwriting it.

HELO WORLDHELO WORLDHELO WORLDHELO WORLDHELO WORLD

After looking for email addresses, the worm attempts to
resolve the address of the SMTP server. There is a critical
bug here, which is the result of an incorrect assumption
about the layout of certain networking structures. The worm
assumes that the hostent structure, returned by the
gethostbyname() API, is followed immediately by the
address list. In fact, this is true for all Windows versions
prior to Windows XP. In Windows XP/2003, there is a null
pointer at that location. Thus, in all variants prior to .E, if
run on Windows XP/2003, the code crashes at this point and
never sends mail. However, on any earlier version of
Windows, the code does work correctly. Additionally, the
‘incubator.scr’ file will still be running, if it was present.

In the event of a successful resolution, the worm will connect
to the SMTP server. It was intended that the worm would
check the return values from the server, however some of
the branch instructions were removed, leaving compare
instructions whose results are ignored. These compare
instructions relate to the client initiation. The most likely
reason for their removal is that the worm’s domain string is
malformed, and the worm author might not have worked out
why a server would not return the expected response.

The worm chooses a random number prior to sending the
message. This random number would be used to select
between different sender addresses, subjects, message
bodies and attachment names, however all of the conditions
point to the same respective texts. This results in an email
that always appears to come from ‘Don Quijote y Sancho
Panza’, with subject ‘juas juas cuidadin con el
attachhhhrrrr!!!!!’ (which translates roughly as ‘heh heh
watch out for the attachment!!!!!’), a message body of

juas juas juas peaso de bicho que lleva el attach!!!
juas juas!!! ;D

Vallez\29a

(which translates roughly as ‘heh heh heh what a tiny bug is
carrying the attachment!!! heh heh!!!’), and an attachment
name of ‘soyunpeasodebichooooooo.scr’ (roughly ‘I am a
tiny buuuuuuug.scr’). The attachment will be the worm file.
The worm will send a single email, but to multiple
recipients. The recipients are all addresses found in the
address book, and no more than 40 of the addresses found in
files. After sending the email, the worm will exit.

CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION

As an unusual example of self-compiling malware and a
novel misapplication of artificial intelligence, Zellome is an
interesting specimen, but its many bugs and painfully slow
execution time prevent it from working as a practical worm.
In evolutionary terms, this species is heading for extinction.

